Curriculum
- 5 Sections
- 111 Lessons
- 156 Weeks
Expand all sectionsCollapse all sections
- Understanding IFE Level 4 Certificate in Fire Safety1
- Building Construction42
- 2.1Timber – use in structure and in timber framed construction
- 2.2Concrete
- 2.3Steel
- 2.4Glass and fire rated glazing systems
- 2.5Building boards, building slabs and insulating materials
- 2.6Sandwich panels
- 2.7Fire retardant / fire resisting materials applied in different contexts
- 2.8External cladding
- 2.9Protected and unprotected steel columns
- 2.10Beams
- 2.11Walls – fire resistance, separation from adjacent properties
- 2.12Stairways
- 2.13Doors
- 2.14Windows
- 2.15Ceilings
- 2.16Building envelope
- 2.17Roofs
- 2.18Heating Systems
- 2.19Ventilation
- 2.20Air conditioning systems
- 2.21Stairwell pressurisation systems
- 2.22Ventilation and smoke control systems
- 2.23Electricity
- 2.24Oil
- 2.25Gas – Natural and Liquefied Petroleum Gas
- 2.26Biomass
- 2.27Water
- 2.28Photoelectric systems including micro generation
- 2.29Separating walls including corridors
- 2.30Compartment walls and floors
- 2.31Junctions formed by elements of structure
- 2.32Protected shafts and protecting structures – lifts and escalators
- 2.33Fire resisting doors and other enclosures
- 2.34Fire resisting ceilings
- 2.35Fire resisting partitions
- 2.36Active fire barrier systems
- 2.37Atria
- 2.38Building separation
- 2.39Fire stopping and cavity barriers
- 2.40Ductwork
- 2.41Dampers
- 2.42Quiz 1 – Building Construction5 Questions
- Fire Safety Principles and Fire Protection Equipment33
- 3.1Management Control
- 3.2Occupancy
- 3.3Construction
- 3.4Time of Evacuation
- 3.5Exits
- 3.6Travel Distance
- 3.7Place of Reasonable Safety / Place of Total Safety
- 3.8Dead End
- 3.9Protected Route
- 3.10ASET (Available Safe Egress Time) and RSET (Required Safe Egress Time)
- 3.11Pre-planning Arrangements for Ensuring the Safety of People
- 3.12Principles of Evacuation Procedures That Should Be Adopted in Case of Fire
- 3.13How the Behaviour of People in a Fire, or Potential Fire, Situation Can Adversely Affect Evacuation and Means of Escape
- 3.14How the Wellbeing of People Can Affect Evacuation e.g. Mobility, Disability, Health, Age, Size
- 3.15Personal Emergency Evacuation Plan (PEEP)
- 3.16The Purpose of Fire Precautions in the Protection of People and Property
- 3.17Use, Siting and Content of Fire Notices
- 3.18Use and Siting of Different Types of Extinguishing Systems Including Handheld Fire Extinguishers
- 3.19Use and Operation of Passive Fire Safety Systems in the Protection of People and Property
- 3.20Detection Systems: Smoke, Heat, Carbon Monoxide and Flame Fire Detection Systems
- 3.21Fire Warning Systems – Manual and Automatic
- 3.22Emergency Lighting Systems
- 3.23Principles That Apply to the Installation of Smoke Venting Systems
- 3.24Principles That Apply to the Installation of Fire Curtains
- 3.25Principles That Apply to the Installation of Fire Barriers
- 3.26Sprinkler Systems – Commercial, Residential, and Domestic
- 3.27Drencher and Water Spray Projector Systems
- 3.28Water Mist Systems
- 3.29Rising Mains – Dry Risers and Wet Risers
- 3.30Foam Systems
- 3.31Gas/Vapour Systems
- 3.32Dry Powder Systems
- 3.33Quiz 2 – Fire Safety Principles and Fire Protection Equipment5 Questions
- Fire Safety Review and Advice37
- 4.1Commercial Office Premises
- 4.2Retail Premises
- 4.3Factories and Other Places of Work
- 4.4Places of Public Entertainment Including Cinemas, Theatres, Dance Halls and Premises
- 4.5Alcohol Licensed Premises
- 4.6Hotels and Other Sleeping Accommodation Premises
- 4.7Health and Other Care-Related Premises
- 4.8Sports Grounds
- 4.9Flats/High-Rise Residential Buildings
- 4.10Safe Storage of Combustible Materials – Prevention and Control of Fires
- 4.11Large Outdoor Events
- 4.12Caravan and Camping Site Safety
- 4.13Petrol Filling Stations
- 4.14EV Charging Points
- 4.15Animal Premises and Stables
- 4.16Define the Terms “Hazards” and “Risks”
- 4.17How to Assess Hazards, Risks and Fire Precautions Within Different Areas of the Premises in Relation to Construction, Layout and Use
- 4.18How to Assess the Type and Level of Risk Associated with Different Hazards in Different Areas of Premises
- 4.19Identification of People Who May Be at Risk
- 4.20Identification of Risks to Property and the Environment
- 4.21Consequences of Failing to Identify Hazards and Control Risks
- 4.22Common Causes of Fire in Different Occupancies
- 4.23Identification of Suitable Options to Eliminate, Reduce or Control Risk in Different Types of Premises (Including Arson)
- 4.24How to Prioritise Risks and Solutions
- 4.25How to Review the Effectiveness of Control Measures
- 4.26How to Provide Feedback on the Effectiveness of Current Control Measures
- 4.27Assess the Requirements for Fire Protection and Determine Appropriate Solutions
- 4.28Training Needs of Workplace Staff
- 4.29Training Requirements for People with Fire Safety Responsibilities (Managers, Fire Wardens and Marshals)
- 4.30The Importance of Maintaining and Testing Installed Fire Safety Equipment and How the Testing Is Conducted
- 4.31Explain Fire Risks (Including Those Related to Arson) to Members of the Public and Property Owners/Managers
- 4.32How Fire-Related Incidents Can Impact on Business Continuity
- 4.33The Role of Building Managers in Protecting People and Property from the Risks of Fire
- 4.34Fire Hazards in the Community and the Promotion of Fire Safety Awareness Programmes
- 4.35Development and Implementation of Fire Safety Education Programmes in the Community
- 4.36How to Engage with Minority Groups Within Larger Community Areas
- 4.37Quiz 3 – Fire Safety Review and Advice5 Questions
- Preparing & Booking for Exams1
Separating walls including corridors
Separating walls including corridors
Separating walls, particularly those enclosing corridors, are essential elements of passive fire protection systems within buildings. Their primary purpose is to confine fire and smoke within designated areas, preventing spread and maintaining safe routes for occupants to escape. These walls must comply with prescribed fire resistance ratings, often ranging from thirty minutes to two hours, depending on the building type, occupancy, and height. Their construction typically involves fire-resisting materials such as masonry, concrete blocks, or fire-rated plasterboard systems attached to metal frames designed to withstand high temperatures without loss of structural integrity.
corridor applications
In corridor applications, these walls play a critical role in maintaining tenable escape routes. Corridors serve as the primary means of escape in many buildings and must therefore be protected from smoke and flame intrusion originating from adjacent rooms or compartments. Separating walls around corridors must be continuous and extend from the floor slab below to the roof or ceiling slab above to ensure no gaps exist through which fire or smoke might penetrate. Particular attention must be paid to junctions where the walls meet floors, ceilings, and other walls, as these are common weak points. Fire-stopping materials and techniques are employed at these junctions to maintain integrity and prevent the spread of smoke and flames.
Openings through separating walls present a challenge as they can compromise the fire barrier. Fire-resisting doors with appropriate ratings, such as FD30 or FD60, are installed within corridor walls to preserve the fire resistance. These doors are equipped with intumescent seals that expand in response to heat, sealing any gaps between the door and frame and preventing the passage of smoke. Self-closing mechanisms are mandatory to ensure the doors remain closed in fire conditions, maintaining compartment integrity. Windows, if present, must be fire-rated glazing systems that resist heat and prevent flame spread for the designated period.
Services such as electrical conduits, water pipes, and ventilation ducts frequently pass through separating walls and corridors, representing potential breaches in compartmentation. To mitigate this risk, fire-stopping products like intumescent collars, wraps, and sealants are applied around penetrations. These products expand or harden under fire conditions, sealing gaps and preventing the passage of smoke and flames. Installation must follow strict guidelines and be inspected regularly to maintain effectiveness. Any modification to services after initial installation requires a reassessment of fire stopping to ensure continued protection.
Smoke control is also critical in separating walls surrounding corridors, as smoke inhalation is a primary cause of fire-related fatalities. Smoke seals are incorporated around door frames, in addition to intumescent strips, to limit smoke migration. In buildings with high occupant numbers or vulnerable individuals, higher standards of smoke containment may be specified. Maintenance of seals, door closers, and fire stopping is vital, as damage or degradation over time can severely reduce the wall’s effectiveness.
Separating walls including corridors are fundamental to passive fire safety, acting as barriers that maintain compartmentation, protect escape routes, and limit fire spread. Their design and construction must be meticulous, incorporating fire-resistant materials, properly rated doors and glazing, and effective fire-stopping for all penetrations and junctions. Regular inspection and maintenance are essential to preserve their performance and ensure the safety of building occupants.