Curriculum
- 7 Sections
- 105 Lessons
- 65 Weeks
Expand all sectionsCollapse all sections
- Understanding IFE Level 4 Certificate in Fire Safety1
- Fire Safety and Fire Engineering Principles21
- 2.1Passive Fire Safety
- 2.2Active Fire Safety
- 2.3Pressurisation
- 2.4Leakage Paths
- 2.5Automatic Suppression Systems
- 2.6Smoke Control and Air Handling
- 2.7Compartmentation
- 2.8Fire Detection and Warning Systems
- 2.9Design Fire Size
- 2.10Smoke Movement
- 2.11ASET/RSET and factors that affect different phases of evacuation
- 2.12Fire Resistance
- 2.13Fire Load
- 2.14Fire Growth
- 2.15Limit of Tenability
- 2.16t² Growth Rate
- 2.17Zone and Fire Models
- 2.18Use of flow chart to support design process
- 2.19Fire/Smoke modelling, examples of programmes
- 2.20Pedestrian flow/evacuation modelling
- 2.21Quiz 1 – Fire Safety and Fire Engineering Principles5 Questions
- Human Behaviour in Emergency Situations10
- 3.1Interaction between Fire safety systems and Human behaviour
- 3.2The physiological, behavioural and psychological effects on people confronted by a fire situation
- 3.3How behaviour of people in a fire can adversely affect evacuation and means of escape
- 3.4Emergency procedures for the safe evacuation of people from a fire situation
- 3.5Individuals with particular requirements to include the young, the old, the disabled, those with poor health, short term and long-term conditions, cognitive impairment and people from different cultures
- 3.6Behavioural aspects of people in fire and implications when planning/reviewing means of escape and evacuation procedures
- 3.7Major incidents of Note
- 3.8Identification of patterns and application of learning from previous incidents
- 3.9Case Study – Grenfell Tower
- 3.10Quiz 2 – Human Behaviour in Emergency Situations5 Questions
- Fire Protection Equipment18
- 4.1Types of System
- 4.2Success or Failure of Operation
- 4.3Automatic Fire Detectors – Radio Systems
- 4.4Automatic Fire Detection – Detector Circuits
- 4.5Zones, addressable for complex evacuation strategies, double knock, multi-purpose detectors
- 4.6Aspirating systems
- 4.7Control and Indicating Equipment
- 4.8Sprinkler systems: Commercial, Residential, and Domestic (life safety)
- 4.9Other water- based systems, drenchers, foam, water mist
- 4.10Gaseous Systems
- 4.11Oxygen Depletion Systems
- 4.12Explosion Detection Systems
- 4.13Explosion Venting Systems
- 4.14Explosion Suppression Systems
- 4.15Control of Flammable Atmospheres
- 4.16Fire Curtains
- 4.17Shutters
- 4.18Quiz 3 – Fire Protection Equipment5 Questions
- Building Design37
- 5.1Evaluate plans to identify risk and provide fire safety solutions
- 5.2Applied Protection
- 5.3Modern Methods of Construction
- 5.4Cross Laminated Timber
- 5.5Steel Frame
- 5.6Glulam
- 5.7Large structural timber
- 5.8Structural Insulated Panels
- 5.9Modular Construction
- 5.10Fire retardant, Intumescent treatments
- 5.11Upgrading fire resisting doors
- 5.12Atria
- 5.13Glazing
- 5.14Separating Walls
- 5.15Compartment Walls and Floors
- 5.16Junctions Formed by Elements of Structure
- 5.17Protected Shafts and Protecting Structures
- 5.18Fire Resisting Doors and Other Enclosures
- 5.19Claddings
- 5.20Facades
- 5.21Tunnels
- 5.22Heating Systems
- 5.23Ventilation
- 5.24Air Conditioning Systems
- 5.25Stairwell Pressurisation Systems
- 5.26Ventilation and Smoke Handling Systems
- 5.27Lifts/Elevators
- 5.28Escalators
- 5.29Travellators
- 5.30Consultation Process
- 5.31Qualitative Design Review (QDR)
- 5.32Interaction and Compatibility Between Different Materials
- 5.33Unexpected consequences of Inappropriate Selection, Use, Location, Orientation and Interaction of Materials
- 5.34Impact of Quality of Construction
- 5.35Impact of Modern Methods of Construction
- 5.36During Construction and Alterations
- 5.37Quiz 4 – Building Design5 Questions
- Fire Safety Management, Review and Advice22
- 6.1Principles and methods of risk assessment in Complex premises and Environments
- 6.2Impact of structure, materials and access
- 6.3Identification of people who may be at risk
- 6.4Identification of risks to Property and the Environment
- 6.5How to explain risks to Members of the Public and Property owners/managers
- 6.6Common causes of Fire in Different Occupancies
- 6.7How to Review Effectiveness of Current Measures
- 6.8How to provide Feedback on Effectiveness of Current measures
- 6.9Impact of Organisational Constraints
- 6.10Strategic thinking
- 6.11The Use of Fire Statistics to Inform Decisions on Fire Safety Programmes
- 6.12Risks in the Community and Prioritising Fire Safety Programmes
- 6.13Objectives of Fire Safety Education in the Community
- 6.14Contents of Fire Safety Programmes and their Purpose
- 6.15Methods to Engage Diverse Community Members and Stakeholders
- 6.16Methods to Evaluate Success of Programmes
- 6.17Strategic Thinking
- 6.18Level of Fire Safety Knowledge and Responsibility at Different parts of the Organisation
- 6.19Engaging and Training Employees in Different Premises/Workplaces and in Different roles
- 6.20Identification of Training Requirements for People with Fire Safety Responsibility
- 6.21Importance of Testing and Reviewing Precautions in Place and how to do this
- 6.22Quiz 5 – Fire Safety Management, Review and Advice5 Questions
- Preparing & Booking for Exams1
Travellators
Travellators
Travellators, also known as moving walkways or moving sidewalks, are horizontal or gently inclined conveyor systems commonly found in airports, large transit hubs, shopping centres, and other expansive buildings. Like escalators, they serve to facilitate the efficient movement of people over longer distances but bring their own particular fire safety considerations that must be addressed in building design and operation.
fire safety perspective
From a fire safety perspective, travellators present similar risks to escalators, primarily because of their mechanical and electrical components and their potential to aid the spread of smoke and fire. The equipment powering travellators—motors, control panels, and electrical wiring—must be installed and maintained to reduce the risk of ignition from electrical faults. As with other mechanical transport systems, overheating components or damaged wiring can be sources of fire if not properly managed.
structure of travellators
The structure of travellators can also influence smoke movement within a building. While often located in open or semi-enclosed spaces, the area beneath and around a travellator can act as a channel for smoke to travel horizontally or vertically, especially if adjacent to stairwells, escalators, or ventilation shafts. To mitigate this, designers may incorporate smoke barriers, curtains, or compartmentation measures to prevent smoke from spreading through these open spaces, helping maintain safe escape routes.
Materials used in travellator construction should be selected with fire safety in mind, favouring those that are non-combustible or of limited combustibility to minimise fuel load and smoke generation. This is important not only for the main structural components but also for the flooring and any finishes adjacent to the system.
Travellators are usually integrated with the building’s fire detection and alarm systems. In the event of a fire, the travellator should automatically stop to prevent injury and allow safe evacuation. Emergency stop controls must also be accessible to users and staff, enabling rapid shutdown if needed.
Routine inspection and maintenance of travellators are essential to ensure safe operation and minimise fire risk. Maintenance activities focus on electrical safety, mechanical integrity, and the removal of dust or debris that could contribute to fire hazards.
Travellators, while beneficial for pedestrian movement in large buildings, require careful consideration in terms of fire safety. Proper selection of materials, integration with fire alarm systems, effective compartmentation, and regular maintenance all help ensure that travellators do not compromise occupant safety or contribute to the spread of fire and smoke within a building.